Bibliography

Armstrong, J. S. (1985). Long-range forecasting: From crystal ball to computer. John Wiley & Sons.

Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers.

Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. https://doi.org/10.1016/j.ijforecast.2008.07.004

Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19–31.

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74.

Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60–83.

Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451–468. https://doi.org/10.1057/jors.1969.103

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312.

Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. Retrieved from https://robjhyndman.com/publications/cv-time-series/

Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons.

Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA: Springer.

Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.

Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47–63.

Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357–373.

Clemen, R. (1989). Combining forecasts: A review and annotated bibliography with discussion. International Journal of Forecasting, 5, 559–608.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73.

Cleveland, W. S. (1993). Visualizing data. Hobart Press.

Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660.

Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303.

Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer.

De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. J American Statistical Association, 106(496), 1513–1527.

Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133.

Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141.

Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576.

Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, (8), 5–10.

Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87.

Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28.

Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. Interantional Journal of Forecasting, 22, 637–666.

Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246.

Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). Chichester: John Wiley & Sons.

Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376.

Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254.

Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons.

Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton.

Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). New York, USA: Springer.

Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. Chichester, UK: John Wiley & Sons.

Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Boston, MA: Kluwer Academic Publishers.

Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA.

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. https://doi.org/10.1016/j.csda.2011.03.006

Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1153.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. Retrieved from https://www.jstatsoft.org/article/view/v027i03

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, 679–688.

Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin: Springer-Verlag. Retrieved from http://www.exponentialsmoothing.net

Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18(3), 439–454.

Hyndman, R. J., Lee, A., & Wang, E. (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis, 97, 16–32.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. New York: Springer.

Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp.

Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17–31.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178.

Lahiri, S. N. (2013). Resampling methods for dependent data. New York, USA: Springer Science & Business Media.

Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer-Verlag.

Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136, 234–319.

Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364.

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co.

Önkal, D., Sayim, K. Z., & Gönül, M. S. (2012). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80, 772–788.

Pankratz, A. E. (1991). Forecasting with dynamic regression models. New York, USA: John Wiley & Sons.

Pegels, C. C. (1969). Exponential smoothing: Some new variations. Management Science, 12, 311–315.

Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. New York, USA: John Wiley & Sons.

Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. New York, USA: Springer Science & Business Media.

Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33, 405–418.

Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, (8), 11–16.

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15, 353–375.

Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23.

Sheather, S. J. (2009). A modern approach to regression with r. New York, USA: Springer.

Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389–402. Retrieved from https://dx.doi.org/10.1002/for.963

Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19, 715–725.

Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195.

Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC.

Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed). Springer.

Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2018). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. J American Statistical Association, to appear. Retrieved from https://robjhyndman.com/publications/mint/

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6, 324–342.